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Abstract

In this paper we are concerned with high-accuracy quadrature method solutions of nonlinear

Fredholm integral equations of the form y(x) = r(x)÷f_ g(x, t)F(l., y(t))dt, 0 < x < 1, where the

kernel function g(x, t) is continuous, but its partial derivatives have finite jump discontinuities

across x = t. Such integral equations arise, e.g., when one applies Green's function techniques

to nonlinear two-point boundary value problems of the form y_(x) = f(x,y(x)), 0 __ x <_ 1,

with y(0) -- Y0 and y(1) -- yx, or other linear boundary conditions. A quadrature method

that is especially suitable and that has been employed for such equations is one based on

the trapezoidal rule that has a low accuracy. By analyzing the corresponding Euler-Maclaurin

expansion, we derive suitable correction terms that we add to the trapezoidal rule, thus obtaining

new numerical quadrature formulas of arbitrarily high accuracy that we also use in defining

quadrature methods for the integral equations above. We prove an existence and uniqueness

theorem for the quadrature method solutions, and show that their accuracy is the same as that

of the underlying quadrature formula. The solution of the nonlinear systems resulting from the

quadrature methods is achieved through successive approximations whose convergence is also

proved. The results are demonstrated with numerical examples.
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1 Introduction

Consider the Fredholm integral equation of the second kind of the form

1
y(x)=r(x)+ g(x,t)F(t,y(t))dt, O<x<_ 1, (1.1)

where the function F(t, w) is assumed to be nonlinear in w, in general. Let M be a nonnegative

integer and assume the following:

(i) r E CM(I), where I --[0, 1].

OJ+k - .

(ii) g E C(9I), where 9t - I x I. If M k 1, then the partial derivatives _g(x,t) - gj,k(x,t)

with j > 0, k _> 0, and 1 < j+k < M, are all in PC(12). By this we mean that they

are continuous in each of the two halves S_ = {(x,t) : 0 < t < x _< 1} and S+ = {(x,t) :

0 5 x < t _< 1} of _, but they are discontinuous across the diagonal S+ N S_ of ft, i.e.,

across x = t, where they have finite jump discontinuities. For future reference let us define

6k(x) = go,k(x,x+)- go,k(x,x-), k = 1,2,...,M. By the assumptions above, (_k(x) are

continuous on I and thus bounded there.

(iii) F(t, w) E C(A) and also Fo,l(t, w) - o_-5F(t, w) E C(A), where A = I × J with J = [R1, R_]

for some R1 and R2 that can be finite or infinite. For M >_ 3 we also assume that Fj.k (t, w) ----

0t_;___;__,t,0j+_ p(. w), with j + k < M - 2, are all in C(A). (Starting with our discussion of improved

quadrature methods in Section 3, we will assume this with j + k _< M for M _> 1.)

Thus, for each value of M, the assumptions in (i)-(iii) contain those for lower values. In

particular, we have r E C(I), 9 E C(l'l), and F, F0.1 E C(A), for any M _> 0. These minimal

smoothness conditions on r, g, and F, along with other conditions not pertaining to smoothness,

are sufficient to guarantee the existence and uniqueness of (i) a continuous solution y(x) of (1.1),

cf. Theorem 2.1, and (ii) a quadrature method (approximate) solution of (1.1), cf. Theorem 5.1.

Theorem 2.1 in the next section states, furthermore, that y(x) E CM(I) for each M > 0 under the

conditions of (i)-(iii). In particular, y E C _ (I) when M = co.

Integral equations of the kind described in this introduction arise, for example, when one applies

Green's function techniques to two-point boundary value problems (BVP's) governed by nonlinear

ordinary differential equations (ODE's). See, e.g., Courant and Hilbert [CH], Morse and Feshbach

[MF], Keller [K], and Pennline [P1], [P2], and IF3].



To illustrate this point let usconsider

=

with the inhomogeneous boundary conditions (BC's),

0<x< 1, (1.2)

y(0) ----Y0 and y(1) - Yl- (1.3)

As is shown in [K], (1.2)-(1.3) can be converted into the Fredholm integral equation of the second

kind

where

and

1y(x) = r(x) + g(x,t)[k2y(t) - f(t,y(t))]dt, 0 < x _< 1, (1.4)

1{g(x,t) -- ksinh k
sinh kx sinh k(1 - t),

sinh k(1 - x) sinh kt,

O<x<t

t<x<l
(1.5)

r(x) = Yo sinh k(1 - x) + Yl sinh kx
sinh k (1.6)

Here k > 0 is a free parameter chosen to guarantee the convergence to the solution y(x) of the

sequence of successive approximations {y(m)(x)}_= o obtained as in

j_o 1yCm+X)(x) = r(x) + g(x,t)[k2yC'_)(t) - f(t, yC'_)(t))]dt, ra --- 0, 1, ..., (1.7)

with y(°)(x) chosen suitably.

A standard procedure for solving (1.1) numerically is the quadrature method; see, e.g., Baker

[B, p. 6S6]. In this method we start with a numerical quadrature formula IN[C] -- )":if=0 (_j¢(xj)

for the integral flo ¢(t)dt. Here 0 _ x0 < xl < .-- < XN _< 1. Next, we replace the integral

1 xfg g( , t)F(t, y(t))dt by the corresponding IN[g(x, .)F]. Finally, we collocate the resulting equation

at the abscissas xi, i - 0, 1, ..., N, to obtain the nonlinear system of equations

N

Yi = r(x,) + _ ajg(xi, xj)F(xj, yj), i= 0,1, ..., N, (1.8)
j=0

where, for each i, yi is the approximation to y(xi).

Subsequently, this system may be solved, e.g., by successive approximations as in

y}0) = y(0)(xi), i = 0,1,...,N,
N

y}m+l) = r(x,) + _ a_g(x,,xjlF(xj,y!m)),
j=O

i = 0, 1, ..., N; m = 0, 1, .... (1.9)



OnecanalsouseNewton'smethodforsolvingthesystemin (1.8),but this requiresthecomputation

of the Jacobianmatrix and the solutionof a linearsystemof N -k 1 equations at each iteration,

which may make the solution very expensive computationally. See, e.g., [K] and [B]. We shall come

back to this subject in Section 8, where we will discuss other options as well.

In general, the accuracy of the yi in (1.8) is that provided by the numerical quadrature formula

Ig[g(x, .)F], subject to the condition that g(x, t)F(t, y(t)) is sufficiently smooth for t E I. For the

case considered in this work, however, g(x, t)F(t, y(t)) is not continuously differentiable for t E I,

_;g(x, abut only continuous there. This is so since go,l(x,t) -- 0 t) has (finite) jump discontinuity

for t - x. Therefore, we cannot expect to obtain a high-accuracy numerical solution by using

a high-accuracy numerical quadrature formula such as a Gaussian formula. For this reason, the

trapezoidal rule that has a low accuracy of O(N -2) has been used in previous work, see [K].

When the approach above, with IN taken as the trapezoidal rule, is applied to the integral

equation (1.4)-(1.6), the resulting Yi have errors of order O(N -2) as shown in [K], provided that

y E C2(I) and {y('_)(x))_=0 defined by (1.7) is a contractive sequence. The same approach was

used also in [P1]-[P3].

In the present work we propose to improve the accuracy from O(N -2) to O(N -2p) for arbitrary

integers p __ 2, by replacing the trapezoidal rule by "numerical quadrature formulas" that have

higher accuracy in the presence of the nonsmooth kernels g(x, t) that we consider here. Specifically,

these formulas are obtained by adding suitable correction terms to the trapezoidal rule approxima-

tions at the endpoints t -- 0 and t = 1 and also at t -- x, the point where g(x, t) fails to be smooth.

These terms are derived from a careful analysis of the Euler-Maclaurin expansion associated with

the error in the trapezoidal rule. Due to the nature of the correction terms, what we obtain are

not real numerical quadrature formulas in the sense described in the paragraph following (1.7).

An important point that will be seen later is that given N, the amount of computational work

per iteration is practically independent of the order of accuracy N -2p of the quadrature formula

used. This means we can increase the order of accuracy by keeping the cost per iteration almost

the same.

An approach similar in spirit to the one here was taken by Sidi and Israeli [SI] in the quadrature

method solution of periodic Fredholm integral equations with weakly singular kernels that have

algebraic/logarithmic singularities along the line t -- x. In [SI] too the Euler-Maclaurin expansion

of the trapezoidal rule plays a crucial role in the development of new numerical quadrature formulas

of high-order accuracy. Only there the periodic nature of the kernel and the solution enables one



to proposeextrapolated (Romberg-type) formulas to replace the trapezoidal rule. In the present

case, however, we do not have any periodicity either in the kernel or in the solution, and, therefore,

we cannot use extrapolated integration formulas. Instea_l, we use corrected formulas to replace the

trapezoidal rule. Thus, the approach, methods, and results of the present work are quite different

from those of [SI].

The existence and uniqueness of the solution to the nonlinear system in (1.8) as well as the

solution to the integral equation in (1.1) has been discussed in [K, Chap. 4] in the context of

two-point BVP's described above. Keller's results are obtained under the condition that F0,1 (t, w)

is continuous and bounded for t E I and for all w E (-oo, +oo). This is a very severe restriction

on F, however. Most problems of engineering interest do not satisfy this restriction. In many

applications physical considerations lead one to conclude that the solution is restricted to some

finite interval. This suggests that it may be feasible to state existence and uniqueness theorems in

which Fo,l(t, w) is continuous and, therefore, also bounded for t E I and w E J = [R1, R2] for some

finite R1 and R2, the solution satisfying y(x) E J for x E I as well. This view is taken in the series

of papers by Pennline, who establishes several existence and uniqueness theorems in the context of

two-point BVP's. Pennline also shows how these theorems apply to various problems that arise in

certain engineering applications. R1 and R2 are assumed finite also in the present paper.

Both in [K] and in [P1]-[P3] the existence and uniqueness of the solution to (1.1) is proved by

establishing that a sequence {y('n)(x)}_= o of successive approximations from (1.7) contracts and

thus converges to the solution y(x) of (1.1) uniformly on I. Before this can be done, however,

one has to show that if the initial approximation y(°)(x) satisfies y(°)(x) E J for x E I, where

J is the finite interval mentioned in the previous paragraph, then so do all the other y('_)(x).

(This is not necessary when J is (-oo, oo).) When analyzing the existence and uniqueness of

the numerical solution defined by the quadrature methods in (1.8) one would like to adopt the

same approach. That is to say, we would like to be able to show first that the successive ap-

proximations y_m) in (1.9) satisfy y_m) E J, i -- 0, 1,...,N, for all m -- 1,2,..., and use this

to establish that {y_m), i -- 0, 1,..., N}_=o contracts and thus has a limit {y_, i -- 0, 1, ..., N}

that is the unique solution to (1.8). Although y(°)(x) E J may imply that y(1)(x) E J, y_O) _

y(0)(zi) E J may not guarantee that y_l) E J, due to the error in the numerical quadrature formula

_'_=oajg(xi, xj)F(xj,y(°)(xj)) for f_ g(x,,t)F(t,y(°)(t))dt. Similarly, the y_2) that are obtained

from the y_l) and the subsequent y_'_) may not all lie in J. In short, the analysis of the nonlinear

system in (1.8) seems to become rather complicated when J is a finite interval. Simply, the con-



ditions r E C(I), g E C(ft), and F, F0,1 E C(A), for which we are able to state an existence and

uniqueness theorem for the solution of (1.1) do not seem to suffice for a corresponding theorem for

the approximate solution defined by (1.8).

In this paper we consider this problem in detail and prove an existence and uniqueness theorem

for the numerical solution by extending the condition F, F0,1 E C(A) slightly to read F, F0,1 E

C(A'), where A' = I x J', where J' = JR1 - r/, R2 + r]] D J, r/> 0 being arbitrarily small. A useful

feature of our proof technique is the use of the modulus of continuity in many places. This enables

us to carry out the analysis without resorting to the e-5 formalism that would have to be used

otherwise. We believe that the idea of employing the modulus of continuity may be applicable in

other problems of numerical analysis as well.

For an existence and uniqueness theorem under assumptions that are of a different nature, see

[S, pp. 689-691].

The plan of this paper is as follows:

In the next section we consider the convergence of the method of successive approximations for

(1.1), and state an existence and uniqueness theorem for the solution of (1.1) that relies on successive

approximations. We also derive an equicontinuity result for the successive approximations y(m)(x)

that we use later.

In Section 3 we derive our higher-order "numerical quadrature formulas" that we use in the

quadrature method by correcting the trapezoidal rule appropriately. In Section 4 we derive error

bounds for the trapezoidal rule and its modifications that are expressed in terms of moduli of

continuity and thus are uniform in the zi. These bounds form an essential part of the analyses

given in Sections 5 and 6. With the slight extension F, F0,1 E C(/V) that we mentioned above,

in Section 5 we prove the convergence of the sequences {Y)'_)}_=0 for all i, thereby establishing

the existence and uniqueness of the numerical solution yl, i -- 0, 1, ..., N, as well. With the same

extension, in Section 6 we analyze the errors in the Yi as functions of N. We do this analysis both

for the trapezoidal rule and for its modifications. We give uniform bounds on lYi - y(x_)] for all

M __ 0. In particular, the bounds for M ----0 and M = 1 are of forms not encountered before. One

of the conclusions that can be drawn from this analysis is that if y E C M (I), M _> 1, then by using

the appropriate modified trapezoidal rule we can achieve an error of order h M, where h = 1IN.

Finally, in Section 7 we illustrate the new quadrature method and the accompanying theory with

specific nonlinear two-point BVP's.
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Asfar asis known to us, the quadrature methods proposed in this work and their accompanying

theory on existence, uniqueness, and convergence of numerical solutions have not been published

elsewhere previously.

We mentioned above that nonlinear two-point BVP's can be formulated as Fredholm integral

equations of the second kind of the type treated in this work. Thus, the methods of this work

can also be used for solving numerically two-point BVP's. Here it can be argued that solving the

associated ODE's by finite differences may be less expensive than solving the corresponding integral

equations as the difference equations that are formed have banded Jacobian matrices and hence may

be solved efficiently by Newton's method. The band size increases as the accuracy of the solution

is increased, however. It is also known that the finite difference approach has great difficulties in

treating BVP's with solutions y(x) that vary rapidly on (0, 1), which may occur, for example, in the

form of very thin boundary layers. The integral equation approach does not seem to have problems

in producing numerical solutions in a stable manner also for such BVP's. In addition, the accuracy

of the numerical solution of the integral equation approach can be increased arbitrarily, practically

with no extra computational cost. See, e.g., Example 2 in Section 7. Finally, in case y'(0) or y'(1)

or both are present in the boundary conditions, they have to be discretized with suitable accuracy

when solving the ODE's, whereas in the integral equation approach boundary conditions are built

right into the associated integral equations and require no discretization.

2 Existence and Uniqueness for Solution of (1.1)

Let us pick a function y(°)(x) and generate the functions y(m)(x), m = 1,2, ..., by the method of

successive approximations as in

y("_+l_(x) = r(x) + g(z,t)F(t, y("_)(t))dt, m = 0, 1, .... (2.1)

The following theorem gives a set of sufficient conditions for {y(m)(Z)}_= 0 to converge, estab-

lishing the existence and uniqueness of a continuous solution to (1.1) at the same time.

Theorem 2.1 Denote

and assume that

fo
_[u](z) = r(x) + g(x, t)F(t, u(t))dt,

u(z) E J for x E I implies _[u](x) E J for x E I.

(2.2)

(2.3)



Assume also that r E O(I), g E C(ft), and F, Fo.: E C(A). Denote the operator Lo_-norm of g(x, t)

on _ and the L_-norm of Fo,,(t, w) on A by [[g] and liFo,ill, respectively, i.e.,

_[g_=max Ig(x,t)]dt and IlFo,:ll = max ]Fo,:(t,w)I. (2.4)
xEl (t,w)ELX

Then, provided that

and

  llFo,lll < 1 (2.5)

y(O) C C(I) and y(°)(x) e J for z E I, (2.6)

the following hold:

(i) y('_) E C(I) and y(m>(z) E J for z E I, m = 1,2, ....

(ii) {y(")(x)}_= o converges uniformly on I to a function y(x) such that y E C(I) and y(x) e g

for x e I.

Oil) y(x) is the unique solution of (1.1).

(iv) If, in addition, r(x), g(x, t), and F(t, w) are as described in (i)-Oii) of the first paragraph of

Section 1 with arbitrary M, then y E CM(I).

The proof of parts (i)-(iii) of this theorem are almost identical to that of Theorem 4.1.2 in [K,

pp. 108-109], provided suitable additions and modifications are made in the latter.

The result of part (iv) can be verified by splitting the integral f0: in (1.1) into the sum fo + f_,

and then differentiating under the integral sign and using induction on M. (The case M = 0 is

already covered in parts (i)-(iii).) In the course of the proof it also becomes clear that only those

g_,k(x, t) for which j > 1 and j + k _< M - 1 and gM,o(x, t) are required to be in PC(f_) for M > 1.

Our next theorem essentially states that, under the conditions of Theorem 2.1, the sequence

{y('_) (x)}_= 0 is equicontinuous on I. We state it in terms of the moduli of continuity of r and y('_)

on I and of g on ft. For the sake of completeness we give the precise definition of this concept.

Definition: Let Y(() = Y(_:,...,_=) be defined on a subset X of 1_=. Then its modulus of

continuity wv on X is defined as

wr(h) _ sup{IY(() -Y(_)I : _-__'; E X, I_,- _l <_ h, i= 1, ..., n}. (2.7)



It is knownthat if X is a compact set and Y(() is continuous on X, therefore, uniformly

continuous there, wr (h) --+ 0 monotonically as h --+ O. We refer the reader to Cheney [C] for this

and other details on moduli of continuity.

Theorem 2.2 Define

IIFII = max IF(t,w)[, (2.8)

and let _, wg, and wy(._) denote the moduli of continuity of r(x) on I, of g(x, t) on f_, and of

y{_l (z) on I, respectively. Then, for any M > O, we have

%(.,(h) < ._r(h) + IIFIl%(h), m = 1,2, ..., (2.9)

and thus wy(,.) (h ) --4 0 as h --+ 0 uniformly in m.

Proof. From (2.1) we have for m = 1, 2, ...,

y(m/(Z) -- y_)(X ') = [r(x) -- r(z')] + [g(z, t) -- g(z', t)]F(t, y(m-1)(t))dt. (2.10)

The result in (2.9) now follows by taking absolute values on both sides of (2.10) and invoking (2.7)

and (2.8) along with the result that y(_)(z) E J for z E I. The rest follows from the fact that

r e C(I), y('_) e C(I), m = 0, 1, ..., and g e C(n). []

3 Derivation of the Improved Quadrature Formulas

Let us denote ¢(t) = g(x,t)F(t, y(t)) with x being held fixed. Let us also assume that, in case

M >_ 1, Fj,k(t,w) E C(A) for j+k < M (instead ofj+k < M-2 for M _> 3). Here y(x) is the

unique solution of (1.1) in the sense of Theorem 2.1, i.e., y E CM(I) and y(x) E J when x E I.

Thus, we are assuming that the conditions (i)-(iii) of Section 1 and the conditions (2.3) and (2.5)

of Theorem 2.1 are satisfied. We will retain all these assumptions throughout the remainder of this

work. We conclude that ¢(t) is continuous for t E I, but not continuously differentiable. We also

conclude that ¢(k)(t), k = 1, ..., M, are continuous in each of the intervals [0, x] and [x, 1], but have

finite jump discontinuities at t = x when x E (0, 1).

Let h = 1/N, where N is some positive integer, and let xi = ih, i = O, 1, ..., N. Assume now

that the point x mentioned in the previous paragraph is equal to xl for some fixed i. Let us consider

the trapezoidal rule approximations T_(h) for fo ¢(t)dt and T+(h) for f_ ¢(t)dt that are given by

i N

T_(h) = hA. ._'''¢(x.__j and T+(h) = h _-_"¢(zj), (3.1)
j=0 j=i
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$

where E"#j ----i + +
j=r

s--1 s

/_i if r < s, and _-'_"#i = 0 if r = s. Obviously,
j=r+l j=r

N

T_(h) + T+(h)= h = T(h), (3.2)
j=0

where T(h) is the trapezoidal rule approximation for f_ ¢(t)dt.

3.1 Euler-Maclaurin Expansions for T(h)

Let us first consider the cases i = 1, ..., N - 1. For each such case x = xi E (0, 1), and we have the

following (Euler-Maclaurin) expansions for T_(h) and T+(h):

(2s)!

Ep(-)(h; x) = -x_¢(2P)(__)h 2p, for some __ E (0, x), (3.3)

and

f l ¢(t)dt- T+(h)- p-l__,_B2_ [¢O,_1)(1 ) _ ¢(25_1)(x___) ] h2 s + E(p+)(h; x),

$=1

x) = -(1 - x)_¢(2P)(_+)h 2p, for some _+ E (x, 1). (3.4)E?)(h;

In (3.3) and (3.4) B_ are the Bernoulli numbers. Combining (3.3) and (3.4), we have

s----1

p-1 B2s

+ E (--_8).I [ (_(2s-1)(x+) -- ¢(2s--1)(___)] h2S + Wp(h; _),
s=l

Ep(h;x)= E(-)(h;z)+ W(p+)(h;z)= B2p [x¢Op)(__)+(l_x)¢(:p)(_+)]h2p" (3.5)(2p)!

Let us now turn to the cases i = 0 and i = N. When x = x0 = 0, we have simply T(h) = T+(h).

Therefore, the Euler-Maclaurin expansion of T(h) now is given by (3.4) with x there replaced by

0. Similarly, when x = XN = 1, T(h) = T_(h), and the Euler-Maclaurin expansion ofT(h) is given

by (3.3) with z there replaced by 1. In other words, T(h) satisfies (3.5) also when x - x0 = 0 and

z -- xN = 1, with the second summation involving [¢(2s-1)(X-_-) -- ¢(2s-1)(X--)] being absent from

(3.5) in both cases.

Notice that Ep(h;x) -- O(h 2p) as h --+ 0 uniformlyin x = xi, i : O, 1, ...,N, arid in N. Also in

(3.3)-(3.5) we have assumed that M _> 2p (p >_ 1). We shall make this assumption throughout the
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remainderof this sectioneventhoughit doesnot coverall possiblecases.(Wewill considerthe

remainingcasesfollowingTheorem6.1in Section6.)

ThecombinedEuler-Maclaurinexpansionof (3.5)guidesthederivationof the improvednumer-

icalquadratureformulasbelow.For a discussionof the Euler-Maclaurinexpansionsee,e.g.,Davis

and Rabinowitz[DR].

3.2 Corrections to the Trapezoidal Rule

It is clearfrom the Euler-Maclaurinexpansionsgivenin (3.3)-(3.5)that f_ ¢(t)dt - T(h) = O(h 2)

as h--+ 0, for allx = xi, i = O, 1,...,N. While for x--- x0 = 0 and x = x_ = 1 this result is

immediate, for x = x_ E (0, 1) it comes somewhat as a surprise, as ¢'(t) is not continuous on [0, 1]

for such values of x. We now aim at improving the accuracy of T(h) by taking its Euler-Maclaurin

expansion into account.

To motivate our approach let us take x = xi E (0, 1). Then T(h) satisfies (3.5). Next, if

¢(2'-1)(0), ¢(2_-1)(1), and [¢(2'-O(x+) - ¢(2'-1)(x-)], s = 1,...,p- 1, are available, then the

numerical quadrature formula

[,(:._1)(1)_ ,(.._1)(o)]
Tp(h) = T(h) - _

$=1

+ B2, [¢(2,_l)(x+l_¢(2,_l)(x_)]h2, (3.6/
$----1

will satisfy f_ ¢(t)dt - Tp(h) = Ep(h;x) = O(h 2p) as h --40. Obviously, Tp(h) with p _> 2 can not

d k

be used as part of a quadrature method for integral equations as in (1.8), since ii-_F(t, y(t)) and

hence ¢(k)(t), k _> 1, are not known. We, therefore, modify Tp(h) by using suitable approximations

for the ¢(k)(t). Below we illustrate this approach in detail for p = 2.

3.2.1 Modification of T2(h)

We again start by taking x = xi E (0, 1). Letting p = 2 in (3.6), we thus have

T2(h) = T(h) - _ {[¢'(1) - ¢'(0)] - [¢'(x+) - ¢'(x-)]} h 2, (3.7)

and, therefore, f_ ¢.(t)dt - T2(h) -- O(h 4) as h --+ O. We can maintain an error of the order of

h 4 by approximating the quantity inside the curly brackets on the right-hand side of (3.7) with

an error of h 2. As we want to be able to preserve the form of the equations in (1.8), we need to

express the relevant approximations solely in terms of the F(xj, y(xj)), j = 0, 1, ..., N. Although

12



this canbe achievedin variousways,wesuggestthefollowingroute that seems to be the simplest

mathematically and also very effective computationally.

We start by breaking up ¢'(t) in the form

d

¢'(t) = go,1 t)F(t, y(t)) + g y(t)). (3.s)

We compute g(x, t) and go,_(x, t) exactly since g(x, t) is given. Thus, only _F(t, y(t)) remains to

be approximated.

Approximations to -_F(t, y(t)) at t = 0 and t = 1 are provided by the one-sided three-point

differentiation formulas

Q'(O) = I[-3Q(O)+4Q(h)- Q(2h)] + 1Q'"(_)h:, 0 < _ < 2h, (3.9)
Lit

and
1 1

Q'(1) = 2-_[3Q(1) - 4Q(1 - h) + Q(1 - 2h)] + 3Q"'(_)h 2, 1 - 2h < _ < 1, (3.10)

and we use these in the approximations for ¢'(0) and ¢'(1). For a detailed discussion of differenti-

ation formulas see, e.g., Hildebrand [H].

As for the term [¢'(x÷) ¢'(x-)], we have

¢'(x+) - ¢'(x-) = [go,l(x,x+) -go,_(x,x-)]F(x,y(x)) = 51(x)F(x,y(x)). (3.11)

Note that _F(t, y(t))[t=_ is absent from (3.11) since g(x, t)is continuous at t = x.

Combining all the above, we obtain the "numerical quadrature formula" T2(h) given by

T2(h)= T(h) h24 {g(z,, 1) (3FN - 4FN_I + FN-2) -- g(x,,O)(-3Fo +4F1 - F2)}

h _ h 2

12 {g0,1(x,, 1)FN -- go,l(x,, 0)F0} + -_61(z,)F,. for x = x, E (0, 1), (3.12)

where Fj - F(xj, y(xj)) for short, and we have used the fact that B2 = 1/6. This completes the

treatment for x = xi E (0, 1).

Remark. One might think that the break-down of ¢'(t) as in (3.8) in order to apply the differ-

entiation formulas of (3.9) and (3.10) to dF(t, y(t)) is redundant, and that these formulas can be

directly applied to ¢'(t). While this is true for x -- xi, i -- 2, 3, ..., N-2, it fails to be true for x ----xl

and x = xN-1. The reason for this failure is that when x - xl = h or x = XN-1 = 1 -- h, g0,1(x, x)

does not exist, hence ¢(t) is not differentiable on (0,2h) or (1 -2h, 1), respectively. Thus, the
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approximationsto ¢'(0) and¢'(1) by (3.9)and (3.10),respectively,cannothaveerrorsof theorder

of h 2. (Actually, the errors are O(1) as h -+ 0, at best.) Finally, the simplicity of the correction

term in (3.11) coming from the point t = x is also a consequence of (3.8).

When x = x0 = 0 and x ---- x N "-- 1, the integrand ¢(t) is M times continuously differentiable

for t E I, hence ¢'(x+) - ¢'(x-) -- 0 in (3.7). Consequently, (3.12) is now modified to read

h

:f_(h)= T(h) 24 {g(O, 1)(3FN-4FN-l + FN__)-g(O,O)(-3Fo+4F1 -F_)}

h _

12 {90,1(0, 1)FN -- go.l(O, 0+)F0} for x = x0 = 0 (3.13)

and

T2(h) = T(h)
h

24 {g(1, 1)(3FN - 4FN_I + FN-2) -- g(1, O)(-3Fo+ 4F1 - F2)}

h 2

12 {g0,1(1, 1-)FN - g0,_(1,0)F0} for x = xN = 1. (3.14)

The "numerical quadrature formula" that is defined through (3.12)-(3.14) thus satisfies f3 ¢(t)dt-

T_(h) -= O(h 4) as h --4 O, uniformly in the x, and N (if M _> 4).

3.3 Modification of Tp(h), p > 3

Again let us begin by taking x - x, E (0, 1), and consider Tp(h) in (3.6). It is sufficient to replace

the coefficients of h _' in the two summations there by approximations whose errors are of order

h 2p-2', s = 1, ...,p- 1. Then, the resulting modified Tp(h), which we call _bp(h), will maintain an

error of order h 2p. We do this as follows: First, we break up ¢(2'-1)(t) in the form

1-= go,2,-1-,(x, t)-_zF(t, y(t)). (3.15)
tt_O

dU
Next, we approximate Ff;F(t, y(t)), # = 1, ..., 2s - 1, at t - 0 and t -- 1, by one-sided (2p- 2s+tt)-

point differentiation formulas, involving x_, 0 < j < 2p - 2s + # - 1, when t - 0, and xj,

N- (2p-2s+#)+l _< j _< N, when t-- 1. All of the g0,_,_l_u(x, t) at t = 0 and t-- 1 are

computed exactly.

As for the term [¢(2'-1) (x+) - ¢(2"-1)(x-)], we have from (3.15) and from the assumption that

g(x, t) is continuous for t E I, that

) _ = - 1 d.
,=o # 52,_l_p(x)-_F(t, y(t))],=_. (3.16)
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u, F't "t'"We approximate _ t , Y( )J[t=_, # = 1, ...,2s-2, by (210-2s+#) -point differentiation formulas

in which x is in the center of the point set or as close to the center as possible. All of the 52__1__(x)

are computed exactly.

Note that all of the differentiation formulas above will have errors of order h 2p-2_, s --- 1, ..., p- 1,

under the assumption that M > 2p - 1, as can easily be shown.

The "numerical quadrature formula" Tp(h) that is obtained by the approximation procedures

above obviously satisfies f_o ¢(t)dt - Tp(h) = O(h 2p) as h -4 O, uniformly in the z; and N (if

M > 2p).

In the next sections we shall refer to _bp(h) as a numerical quadrature formula even though it is

not one in the true sense of the expression.

3.4 The New Quadrature Method from T2(h)

We close this section by giving the new quadrature method for (1.1).

following system of equations

yi = r(x,) +

It is defined through the

N

j=O

h
24 {g(x,, 1)(3FN -- 4FN__ + FN-2) -- g(x,, 0)(-3Fo + 4F_ - F2)}

h _ h 2

12 {go,_(xi, 1)FN -- go,_(xi, O)Fo} + --_5_(xi)Fi, i = 1,2, ...,N - 1,

y0 = r(x0) +
N

j=O

h
24 {g(0, 1) (3Fly - 4FN__ + FN-2) -- g(O, 0) (-3Fo + 4F_ - F_)}

h 2

12 {g0,_(0, 1)FN - go,_(0, O+)Fo}

N

j=O

h
24 {g(1, 1)(3FN -- 4FN_, + FN-2) -- g(1, 0)(-3Fo + 4F_ - F2)}

h 2
12 {go,_(1, 1--)FN --g0,_(1, 0)Fo}.

Here Fi -- F(xi, Yi) and Yi is the approximation to y(xi).

If we now write the system in (3.17) as

(3.17)

Yi = _i(Yo,Yl, .",YN), i = O, 1, ...,N, (3.18)
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then the methodof successiveapproximationstakesthe form

y[O) = y(O)(xl), i = O, 1, ..., N,

y_m+l) = (_i(y_'_),yi'_),...,y('_)), i= O, 1,...,N; m--O, 1,2, .... (3.19)

4 Preliminary Results on T(h) and 2bp(h)

4.1 Bound on Trapezoidal Rule Error

The next theorem bounds the error in the trapezoidal rule in terms of the modulus of continuity

of the integrand.

Theorem 4.1 Assume that Q(t) is integrable on I, and denote by Tq(h) the trapezoidal rule

approximation to f_ Q(t)dt. Then

[EQ(h)[ = ilQ(t)dt- TQ(h) <_ wQ(h),

where WQ is the modulus of continuity of Q(t) on I.

Proof. We have

and

(4.1)

f0 N- 1 fxi+a
1Q(t)dt= _ Q(t)dt (4.2)

i:0 Jz,

N-1 1 fx,+,= [Q(xi) + Q(x,+I)] dt. (4.3)TO(h) _ 2._,
i----O

[Q(t) - Q(x,+,)]dt}.

Subtracting (4.3) from (4.2), we obtain

N-_ 1 (F'+' F'+'[Q(t) - Q(_,)]dt +
i--0

Taking absolute values on both sides of (4.4), we next obtain

N-1 1 _f_'+' f_'+'IQ(t) - Q(x,)Jdt +
i=0

IQ(t) - Q(z,+x)ldt}.

The result in (4.1) now follows from (2.7) and from the fact that zi+_ - xi = h = 1/N. []

Our next result is an application of Theorem 4.1 with Q(t) = g(x, t)F(t, u(t)).

(4.4)

(4.5)

Theorem 4.2 Assume that g E C(12) and that F, F0,x E C(A), and define G(x, t) = g(x, t)F(t, u(t)).

Assume also that u(t) is such that u(t) E J for t E I, and G(x, t), as a function of t, is integrable
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on I when x E I. Denote by Ta(h; x) the trapezoidal rule approximation for f_ G(x, t)dt. Then

[EG(h;x), - IfolG(x,t)dt- TC(h;x)l

<. HFII%(h) + IIgll[" F(h) + ]lFo,lIIw_(h)], (4.6)

uniformly in x E I. Here I]g[[ is the Loo-norm o`f g(x,t) on gt defined by ][g[[ = max(_,t)en [g(x,t)[.

Proof. From Theorem 4.1

[Eg(h;x)[ _ sup{[G(x,t) - G(x,t')[ : t,t' E I and It - t'[ __ h}. (4.7)

Now

and

G(x,t) -G(x,t') = F(t,u(t))[g(x,t) -g(x,t')]+g(x,t')[F(t,u(t)) - F(t',u(t'))] (4.8)

F(t,u(t))-F(t',u(t'))=[F(t,u(t))-F(t,u(t'))]+[F(t,u(t'))-F(t',u(t'))] (4.9)

and, finally, by the mean value theorem,

F(t, u(t)) - F(t, u(t')) -- F0,1(t, _)[u(t) - u(t')] for some _ E g. (4.10)

The result now follows by taking absolute values in (4.8)-(4.10) and maximizing over I, _, and A.

We leave the details to the reader. O

4.2 Bound on Error in T2(h)

We now proceed to the corrected rules T_(h; x,) with G(x, t) - g(x, t)F(t, u(t)) that are obtained

from the trapezoidal rule TO(h; x_) for f_ G(x_,t)dt of Theorem 4.2 exactly as described in the

previous section. It is sufficient to examine the details of the case p -- 2 as all other cases are

treated in exactly the same way and the conclusions are the same for all values of p.

From (3.12)-(3.14) it is clear that the correction to TO(h; x_), i = O, 1, ..., N, is of the form

2

T_(h;x,) - Ta(h;x,) = h _[(_,jF(x_,u(x_))-t- ZijF(xN_i,u(xlv=j))]
j=O

+ 'h' [7,oF(xo, U(Xo)) + 7,NF(Xlv, u(xN)) + 7,F(x,, u(x,))]. (4.11)

There are two important points to be noted here: (i) The number of function values F(xj, u(xj)) in

this correction is fixed and is thus independent ofN. (ii) The coefficients alj, _ij, and 7_j are some
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constantmultiplesof g(x,, 0), g(x,, 1), go.l(x,,O), go,_(z,, 1), and 51(x,), and thus are uniformly

bounded in i,j, and N ifg E C(f_) and g0,1 E PC(f_). Thus, if F E C(A), we have for all i

12_ (h; z,) - T a (h; xi)l < (C_2)h + C_2)h2)llFII (4.12)

for some positive constants C_ 2) and C_ _) that depend on g but are independent of F, i, and h.

Combining all this with Theorem 4.2, we have the following important convergence result on

Theorem 4.3 Assume that g E C(f_) and that go.1 E PC(f_). Assume also that F, F0,1 E C(A).

Let u E C(I) and u(t) E J fort E I. Then, fori=O,l,...,N, we have

f II/_(h;x,)l = G(xl, t)dt- T_(h;xi) <_ D2(h)-Faw,,(h), (4.13)

where a > 0 is a constant and D2(h) is a function that goes to 0 monotonically as h --+ O, and both

are independent of i, N, and u(t).

The result of Theorem 4.3 is important since it states that 7_(h; xi) --+ f0_G(x, t)dt as h --+ 0

uniformly in i = 0, 1, ..., N. (For a and D_(h) see Theorem 4.4 below.)

4.3 Bound on Error in 7_p(h) for Arbitrary p

So far we have analyzed the properties of 7_(h; xi). We would now like to summarize the properties

of 7_fl(h;xi) for arbitrary p > 1. Note that 7_(h;xi) is simply the trapezoidal rule TC(h;xi)

throughout.

Theorem 4.4 Provided g E C(ft) and go,i E PC(ft), 1 < i <_ 2p-3, and u E C(I), we can

construct the corrected trapezoidal rule T_(h; xi), which is of the form

N [2p-2 \

T_(h;x,) = TC(h;x,) + _ A,,kh F(xj,u(x_)). (4.14)
j=0

Here the "_jka(P)depend on g but not on F, and can be bounded independently of i, j, and N, and the

A(P)
number of the nonzero _'ijk is fixed and thus independent of N. As a result, under the conditions

that u(t) E J for t • I, and F, Fo._ • C(A), (_.13) can be generalized to

I/)_(h; x_)l = G(z,t)dt-_f(h; <_ D,(h)+_a_u(h). (4.15)

18



where a > 0 is a constant and Dp(h) is a function that goes to 0 monotonically as h --+ O, and both

are independent of i, N, and u(t). While a is the same for all p, Dp(h) depends on p. Specifically,

w _p-2 ]= IIF0,111and mp(h) = IIFII g(h) + __, Cf)h_ I + Ilgll_F(h), (4.16)
k=l J

a(p) that depends on g but is independent ofwhere, for each k, C(kp) is an upper bound on E:_o "_,jk

a(p) and hence C_ p)F, i, and N. (If p = 1, then the "-'ijk are all zero.)

5 Existence and Uniqueness of Numerical Solution

In order to solve the problem of existence and uniqueness of the numerical solution we need to

enlarge the set J = [R1, R2] by an arbitrarily small amount r/> 0 that will be fixed later. Hence,

we define J' = [R_, R_] = [R_ - r/, R_ + r/] and A' = I × J'. We also define

tW0,111'=

We start with the following lemma.

max JF0,1(t,w)l.
(t,_)E/tJ

Lemma 5.1 Assume that g(x, t) is as in Theorem 4.4 so that we can define Tfl(h; xi) as in (.[.14).

Define also

N N /2p-2 \

Zp,i(h;{wk})=hE"g(xi, xj)F(xj,wj)q- E Ai_kh F(z_,wj).
j=0 j=0

Then, provided that F, Fo,1 6 C(A') and uj, vj 6 J', j = 0, 1, ..., N, we have

(5.1)

IZp,,(h;{uk})- Zp,,(h;{vk})l_ #(h)llu- vii, i= 0, 1,..., N, (5.2)

where

where [g] is as defined by (2._) and C(_p) are as described in Theorem 4._, and

(5.3)

I1_- _11= max lu_- v_l. (8.4)
0_<i<Iv

Remark. Note that Zp,i(h;{_,(:_)})= :Fp(h;_,)when G(x,t)= g(x,t)t(t,u(t))for an arbitrary

function_(t).

Proof. The differenceWp,i= Zp,i(h;{uk}) - Zp,_(h;{vk})can be expressedas

Wp,,=h y_"g(x,,x_)[F(zj,uj)- F(zj,vj)]+ _-_ ..,jk,_ j [F(z_,ujl- F(z_,v_)],
j=O j=O \ k=l
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which, upon applying the mean value theorem, becomes

N N /2p-_ \

Wp.i=hE"g(xi, xj)Fo.l(xj,wj)(uj-vj)+ E A,_kh Fo,l(xS, wj)(u j v_),
j=0 j=0

where w 5 is between us and vj for each j, and hence w_ E J', j = 0, 1,...,N. Taking absolute

values, and maximizing appropriately, we obtain from this

Iwp,,l< h "lg(xi, zy)l+ Y_C(_')h k IIFo,ll(llu-vll.
k=l

N

Now h is the trapezoidal rule approximation for flo Ig(x,t)ldt, and Theorem 4.1
5=0

applies to it. Invoking also the definition of [[g]]we thus have

N

h  "lg(x,,xs)l < [[g]l+
5=0

The result now follows. D

We now consider the nonlinear system

-y, = r(x,) + Zp,,(h; {yk}), i = 0, 1, ..., N, (5.5)

that results from applying the corrected trapezoidal rule 2_(h; xi) to (1.1). In the next theorem

we show that there exists a unique solution for the yi, i = 0, 1, ..., N, for all large N, under suitable

conditions. When p --- 1, T_(h; x_) = Te(h; xi) and these conditions are almost the same as those

given in Theorem 2.1. For p > 2 we should impose sufficient differentiability conditions on g(x, t)

so that 2b_ can be defined, as mentioned earlier.

Theorem 5.1 Assume that all the conditions of Theorem 2.1 concerning r(x), g(x, t), and F(t, w)

hold. Assume, in addition, that g(z, t) satisfies the differentiability conditions of Theorem 4.4 so
^

that Tpa is defined. Assume, by extension, that F, Fo,_ • C(Ao), where A o = I × [R1 - rio, R_ + rio]

for some rio > 0 and thus Ao D A. Let the sequence of successive approximations {y_"), i =

O, 1, ..., N}_=o be generated from (5.5) according to

y_O) = y(O)(xi), i = O, 1, ..., N,

!i('_+l)-r(x,)+Zp.i(h;{y_m)}), i 0,1, N;m 0,1, (5.6)

(Here we recall that the function y(°)(x) is the initial approximation in (2.6).) Then there exists a

constant ri • (0, rio) and a positive integer No, si_ch that the following hold:
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(i) y_m) e J' = [R1 - r/, R2 + r/], i = 0, 1, ..., N, m = 0, 1,..., for each N > No.

(ii) limm_,oo y_'_) = Yi E J', i = O, 1, ..., N, exist for each N >_ No.

(iii) Yi, i = O, 1, ..., N, is the unique solution to (5.5), for each N >_ No.

Remark. As will follow from the proof below, such an _ can be picked and once this is done any

smaller _ will render the theorem valid. Thus, r/can be picked arbitrarily small.

Proof. We start by picking 7/ • (0, r/0) such that [[g_llFo.lll' < 1, which is possible from the

assumption that F0,1 • C(A0) and from (2.5) in Theorem 2.1. Thus the choice of _ is independent

of N. With rI thus fixed, we next pick a positive integer/V, thus h = 1//V, for which #(h) < 1,

with #(h) as defined in (5.3). This is possible as limh__0#(h) = _g_llF0.111' by the assumption

that g • C(_t) that implies that Igl • C(Q) so that limh_,0wlgl(h ) = 0. Moreover, we have

it(h) < it(h) < 1 for all h < h or all N > fi/.

From Theorem 2.2 we have

w_(_.,(h) <_ max{w_(o)(h),w_(h) + [IFIIwg(h)} = p(h), m = O, 1, ..., (5.7)

and p(h) --+ 0 monotonically as h --+ 0. Define now

e(h) = Dp(h) + ap(h), (5.8)

with Dp(h) and a as in Theorem 4.4. Thus e(h) --+ 0 monotonically as h --+ 0 as well. Therefore,

there exists a positive integer No _>/V, 1�No = ho < h, for which

 (h0) < 7. (5.9)
e(ho) < rj[1 - it(h)] _=_ 1 - #(h)

Obviously, with this ho we have

rr_

e(h)_t(h)]q < e(h) < e(ho) < e(ho) <_, forh<ho<h, re=O, 1,2, .... (5.10)
q=o - 1- #(h) - 1 - #(ho) - 1 -it(h) - -

At this point it is worth recalling that Zp,i(h; {w(xh)))is the corrected trapezoidal rule T_(h; x,)

for the integral f3 g(x,,t)F(t, w(t))dt.

Let us set m = 0 in (5.6) and (2.1). Upon subtraction we obtain

y_l)_ y(1)(x, ) = Zp._(h; {y(°)(xk)})- flg(x,,t)F(t,y(°)(t))dt, (5.11)
,SO
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and, by (4.15), (5.7), (5.8), and (5.10), this gives

where we have defined

(5.12)

e_m) = y_m) _ y('_)(x,), i = 0, 1,...,N, and ]]e(_)]l = max[e_'_)]. (5.13)

By (5.12) and the assumption that y(1)(x) E J for x E I, it is clear that y$1) E J', i = 0, 1, ...,N.

Let us next set m = 1 in (5.6) and (2.1). Upon subtraction we obtain

_?)_ y(2)(_,) = [zp,,(h;{y(1)})_zp,,(h_{y(1)(_k)})]

+ [Zp.,(h; {y(1)(xk)})-folg(x,,t)F(t,y(1)(t))dt]. (5.14)

Applying Lemma 5.1 to the first brackets, and (4.15) to the second ones, and also invoking (5.7),

(5.8), and (5.12), and, following that, (5.10), we obtain

]le(2)lI <_ _(h) + #(h)][e(1)]] _< _(h)[1 + #(h)] < 7. (5.15)

Therefore, y_2) E J', i - 0, 1, ..., N, too. Proceeding by induction, we can show in general that

rn--I

Ile(_)ll < e(h) +,(h)lle(_-l) H< E(h) _-_ _(h)] q < 7, m-- 1,2, ..., (5.16)
q-_0

as a result of which y_'_) E J', i = 0, 1, ..., N, for all m. This proves part (i) of the theorem.

For part (ii) we proceed in the standard way. From (5.6) we have

_+1)_ y_)= z_,,(h;(y_(_)})-z_,(_;{y(_-l)}), m= 1,2,.... (5.17)

Since y}m) E J' for all i and m, Lemma 5.1 applies and we have

Ily(_+1)- y(_)lI _<u(h)[ly(m)- y(_-l)ll, m = 1,2, .... (5.18)

The result now follows by the fact that #(h) < 1 since h _< h0, which implies that {y}'_), i =

0, 1, ..., N}_=0 is a contractive sequence arid thus has a limit.

The proof of part (iii) follows from the continuity of the function F on A'. O

It is worth pointing out to the similarity between (5.18) for the numerical solution and

max y(m+l)(x)- y(m)(x)] < #max y('_)(x) - y(m-1)(x)[ m = 1,2, (5.19)
xEI -- xEl ' "'"

for the analytical solution, with # as in (2.5).
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Sincewecan pick r/arbitrarily closeto 0 and thus IIF0,111'arbitrarily close to IIF0,111,we see

that for very large N, hence very small h, #(h) in (5.3) is arbitrarily close to # in (2.5). That is to

say, the discrete successive approximation procedure converges practically at the same rate as the

continuous one does.

6 Accuracy of Numerical Solution

With the existence and uniqueness questions resolved, we now turn to that of the accuracy of the

numerical solution yi, i = O, 1, ...,N of (5.5). Our proof proceeds along the same lines as that of

Theorem 4.2.1 in [K, pp. 114-115].

Theorem 6.1 Under the conditions of Theorem 5.1, the numerical solution with N > No satisfies

Ilell = max lY, - y(x,)l < 1 max IE_(h;x,)l, (6.1)
0_<i_<N - 1-#(h) 0_<i_<N "

where G(z, t) = g(x, t)F(t, y(t) ).

Proof. Subtracting (1.1) with z = xi from (5.5), we can write

Yi- Y(Xi) --" [Zp,i(h; {Yk))- Zp,i(h; {y(Xk)})]

+ [Zv,_(h; {y(xk)})- folg(x,,t)F(t,y(t))dt] • (6.2)

Since y(z) E J for x E I and yi E J', i = 0, 1, ..., N, Lemma 5.1 applies to the expression in the first

brackets. The expression in the second brackets is nothing but /_(h; xi), the error in T_(h; x,).

Thus, taking absolute values, we have

le, I = lYi - y(z,)l < #(h)llell + I/_(h; z,)l- (6.3)

The result in (6.1) follows by maximizing both sides of (6.3) and by using the fact that #(h) < 1.

We leave the details to the reader. El

Since for all N _> No we have/z(h) < #(h0) < 1 and thus 1/(1-/z(h)) < 1/(1-#(h0)), we realize

from Theorem 6.1 that the accuracy of the numerical approximations y_ is determined strictly by

that of the numerical quadrature formula underlying the quadrature method.

In subsection 3.1 on Euler-Maclaurin expansions we proved that Ev(h; x_) = O(h 2v) as h --+ O,

uniformly in i and N, under the assumption that M _> 2p (p >_ 1). This also produces the result that

/_(h; zi) = O(h _p) as h _ 0, uniformly in i and N, whenever M _> 2p (p > 1), as we have already
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shown.This result coversall casesexceptsomein whichM is an odd integer. In case M -- 2p - 1

(p _> 1), we have Ep(h; x,) = O(h 2p-x) as h -+ 0, again uniformly in i and N. (This time Ep(h; xi)

o_-l _(involves ¢(2P-1)(t) -- ot-DT:r_-_v_xi,t), but is given by an integral representation involving periodic

Bernoullian functions that we will skip.) This produces the result that/_(h; xi) = O(h 2p-1) as

h -4 0, uniformly in i and N, whenever M = 2p - 1 (p _> 1). This then covers all possible cases

that can occur. Both bounds on /_p(h; xi) will be of use below.

Also note that for arbitrary M the rules _qa, q = 1, ..., [(M+ 3)/2J, are all well defined. Using

the facts mentioned in the previous paragraph, it can be shown that T_(M+I)/2J and T_M+_)/2j

have errors of the same order, namely, O(h M) as h -+ O. Thus, there is no advantage to the rule

T_M+3)/2J when we know that y E CM(I), and we shall not consider it in what follows.

In light of the contents of the previous two paragraphs we now discuss the various possible cases

to which Theorem 6.1 applies.

1. The case M --- 0. Here r E C(I), g E C(12), and F, F0,1 E C(A'), and no other differentiability

properties for r, g, and F are given. From Theorem 2.1 y E C(I) only. Thus the quadrature

rule that can be used for this case is only _bl(h) _- T(h), namely, the trapezoidal rule itself.

Applying Theorem 4.2, we obtain

IleH <_ B_ °) wg(h) + B(_°) wE(h) + B(3°) wy(h) = o(1) as h --+ 0. (6.4)

2. The case M = 1. Here r E C_(I), g E C(fl) and g_,o, go,_ E PC(_), and F, F1,0, F0,1 E C(A').

From Theorem 2.1 y E CI(I) only. The quadrature rule that can be used for this case is

:F1(h) - T(h), the trapezoidal rule. (As we mentioned above, we disregard 2b_(h) even though

it is well defined.) Now the error in the trapezoidal rule is of order h uniformly in i. Hence

we have for this case

]]ell <_ B_l)h for Tl(h). (6.5)

3. The case M - 2. Here r E C2(I), g E C(_) and gj,h E PC(gt), j+k < 2, and F and

F_,k, j + k _< 2, are all in C(A'). From Theorem 2.1 y E C2(I) only. In this case too we can

use _bl(h ) -- T(h). (Again, we disregard T2(h) even though it is well defined.) The error in

the trapezoidal rule now is of order h _ uniformly in i. Thus, we have for this case

]Jell _ S_2)h _ for _b_(h). (6.6)

4. The case M > 3. Here r E cM(I), g E C(_) and gj,k E PC(gt), jTk < M, and F and

Fj,k, j + k _< M, are all in C(A'). From Theorem 2.1 y E CM(I) only. In this case we can

24



usethe rulesTp(h), p = 1, 2, ..., L(M+ 1)/2J. (We disregard _bL(M+3)/2 j even though it is well

defined.) We then have

f

[ B (M) h M ,

p = 1,..., [(M- 1)/2J,

p = [(M + 1)/2J.
(6.7)

Thus the maximum accuracy that can be achieved is determined by the differentiability properties

of the exact solution y(x), which, in turn, are determined by those of r, g, and F.

7 Applications to Two-Point Boundary Value Problems

Example 1. Consider the two-point BVP with

yll = 2y3,

y(0) = 2 and

The exact solution to this problem is

y(x) =

O<x<l,

2

y(1) = _.

1

x+½"

General problems with ODE's of the form y,, = ay" with a > 0 and n >_ 1 occur in nth order

reaction kinetics, see Aries [A]. We note that Dirichlet BC's are not the standard BC's associated

with reaction kinetics problems (normally, y'(0) = 0 is assigned at x = 0). We use Dirichlet BC's

in our example, as this enables us to determine the exact solution by which we can demonstrate

the accuracy of the corrected trapezoidal rule quadrature methods rigorously.

We observe that, for x E [0,1] and y E [0,2], f(x,y) -- 2y 3 satisfies 0 < 0/ < 24 and 0 <
-- 0y --

f(x,y) _ 8y. Therefore, Theorem 1 in [P2] applies, and we conclude that (i) a unique solution

y(x) E [0,2] exists, and (ii) with k 2 = 12 and y(°)(z) = r(x) in (1.4)-(1.7), y(x) = lim,__.o_ y(m)(x)

uniformly in [0, 1]. In turn, all the conditions of our Theorem 2.1 and hence of Theorem 5.1 as well

are satisfied, and the quadrature method solutions via the trapezoidal rule and its modifications

exist and are unique for all large N.

From (5.18) and (5.3), it is clear that the contraction parameter #(h) of the sequence of suc-

cessive approximations {y_m), i = 0, 1, ..., N}_=o is practically the same as #, the contraction

parameter of the sequence {y('_)(x)}_= 0' that is given in (2.5). Consequently, we can conclude that

the sequences {y[m), i = 0, 1, ..., N}_=2 will converge to a prescribed accuracy in the same number
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of iterations independentlyof N. We have verified this conclusion by solving the problem above

with different values of N.

We have applied the quadrature method via the trapezoidal rule T(h) and also via the corrected

trapezoidal rule lb2(h) with N -- 100 and N = 200. The results of the computations are given in

Tables la and lb, respectively. The last columns of these tables demonstrate very clearly the orders

of accuracy of h 2 and h 4. It seems from these tables that if the quadrature formula ib3(h), whose

order of accuracy is h 6, were used, then we would be able to achieve errors of order 10 -12 with

N -- 100. We also note again that the computational cost per iteration of all three quadrature

methods is practically the same, and this makes the high-accuracy methods practical.

Example 2. In a problem concerning the analysis of heat and mass transfer in a porous catalyst,

see Kubecek and Hlavacek [KH], the following two-point BVP is obtained:

7#(1- Y) '_y"= c_yexp l'_-(_.'--y)/ ' 0 < x < 1,

y'(O) -- 0 and y(1) = i.

The quantities 7,8, and a are positive constants representative of dimensionless energy of activa-

tion, heat evolution, and Thiele's modulus, respectively.

The solution y(x) can again be shown to satisfy a Fredholm integral equation of the form (1.4)

with

and

f
1 [ coshkxsinhk(1-t), 0<z<t

g(x,t)- kcoshk / sinhk(1-x) coshkt, t <_ x < 1,

cosh kx

r(x)--

The existence and uniqueness of a solution y(x) satisfying 0 _< y(x) _< 1 when 0 < x <_ 1 was

proved in [P3]. There it is shown that f(x,y) = ayexp k1+#(1-_)) satisfies 0 < _ _< 2he _# and

0 <_ f(x, y) < ae_#y for 0 _ y _< 1, provided 78 _< 1. Consequently, Theorem 2B in [P3] applies,

and the sequence of successive approximations {y('_)(x)}_= o with y(°)(x) -- r(x) converges to the

unique solution when we pick k 2 - ae _#. Again, all the conditions of our Theorem 2.1, and hence

of Theorem 5.1 as well, are satisfied, and the quadrature method solutions via the trapezoidal rule

and its modifications exist and are unique for all large N.

We have applied the quadrature method via the corrected trapezoidal rule T2(h) with N =

50,100, and 200. This enables us to verify numerically the h 4 behavior of the quadrature method
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error eventhoughwedo not havethe exactsolutionagainstwhichto compare our approximate

solution. If we let YN,i stand for the approximate solution at x -- i/N, then, for each i = 0, 1, ..., N,

the ratios (y_,i - Y2N,2i)/(Y2N,2i -- Y4/v,4i) should approach 24 - 16 as N becomes large. This was

seen to be the case in the numerous computations that we performed.

We have also observed that, for 78 fixed, as 5 becomes large, the ODE has the characteristic of

a singularly perturbed problem ey" -- ](z, y), where e - 1/5 and ](x, y) is independent of e. Our

computations suggest the existence of a boundary layer near z -- 1 for large values of 5. Even in

such cases our quadrature method seems to be producing very smooth and accurate approximations

to y(z) everywhere in [0, 1]. This is true, in particular, near x = 1 where y(x) has a boundary layer

and hence is varying rapidly.

In Tables 2a and 2b we give some numerical results obtained for the cases (a) 5 = 10, /3 -

0.5, "f = 2 and (b) 5 = 100, _3 -- 0.5, 7 -" 2, respectively. These tables show the numerical

solution with N -- 200, the differences dl 5°) lYs0,_ yl00,2il and d(1°°)= - -i = lYl00,_i- Y200,4d and their

d(5O)id(1OO)ratios __ ,_i . In the absence of knowledge of the exact solution, and making the reasonable

dOoo)assumption that Y2N,2i is a better approximation than YN,_, we can say that dl5°) and __ are

almost identical to the absolute errors in Ys0,i and Yl00,_i, respectively. In addition, since the

corrected trapezoidal rule _b2(h) has error of order h 4, _,d!g)/d!2N)._, must approach 24 ---- 16 as N

becomes large. This is observed in the last columns of our tables.

8 Summary and Concluding Remarks

In this work we have considered the quadrature method solution (via the trapezoidal rule) of Fred-

holm integral equations of the second kind described by (1.1) and (i)-(iii) in the first paragraph

of Section 1. Exploiting the known singularity structure of the kernel function g(x,t), we have

designed a class of corrected quadrature formulas for the integral f_og(x, t)F(t, u(t))dt with correc-

tions derived from an analysis of the Euler-Maclaurin expansion associated with the trapezoidal

rule. These new quadrature formulas allow us to improve the order of accuracy in the standard

trapezoidal rule from N -2 to N -2p for arbitrary p >_ 2, where N + 1 is the number of points in the

discrete approximation. We have also shown that the accuracy of the quadrature method solution

Yi, i - 0, 1, ..., N, is the same as that of the underlying numerical quadrature formula.

One can also achieve an increase in accuracy by extrapolation provided an asymptotic expansion

for the error involving negative powers of N is known. However, for one extrapolation the problem
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will haveto besolvedfor agivenN and then again for 2N. The improvement will only be able to be

achieved on the course grid at an expense that is almost 4 times that of the improved quadrature.

With the improved quadrature we do not need to obtain another approximation with twice the

number of points.

Finally, we would like to comment on the solution of the nonlinear system of equations (5.5)

for the discrete approximation y_, i = 0, 1, ..., N, The reader is aware that throughout the paper

we have emphasized the method of successive approximations as given in (5.6) for solving this

system. Actually, successive approximations have served as an indispensable tool in the theoretical

study of the new methods proposed here. In particular, the proof of Theorem 5.1 on existence and

uniqueness of the y_, i = 0, 1, ..., N, and that of Theorem 6.1 concerning the error in the Yi rely

entirely on successive approximations.

In addition to being a theoretical tool, the method of successive approximations has something

to offer as a practical numerical tool for actually solving the system in (5.5). First, it is an extremely

easy method to implement on a computer. Next, as we have shown in the course of Sections 5 and

6, the convergence of successive approximations in our problem has the nice property that the

associated contraction parameter/z(h) given in (5.3) is practically independent of _/, of h, and

of which quadrature formula _pa is being used, since r/ > 0 is arbitrarily close to zero and N is

sufficiently large, and thus lim,_,0 (limh_0/_(h)) = /z with /_ as in (2.5). This implies that the

number of iterations to reach convergence is nearly independent of N and of the accuracy of the

quadrature formula. Consequently, with N fixed, the cost of the solution is practically the same for

all accuracies. For these reasons the method of successive approximations may be a very efficient

numerical tool for obtaining the Yi when the contraction parameter # is sufficiently smaller than 1,

as it will require a small number of iterations to reach convergence.

Of course, when the contraction parameter # is too close to unity, successive approximations

converge very slowly and hence become quite expensive. In such a case Newton's method may be

very efficient as it has quadratic convergence and thus may produce the Yi with high accuracy at

the cost of a small number of iterations. Newton's method may be more efficient than successive

approximations in such cases despite the fact that each of its iterations has a large computational

cost. Now we need a reasonable initial approximation for Newton's method in order to reduce the

number of iterations and hence the cost. Again, successive approximations can be used to produce

such an initial guess. Thus, this kind of a combination of successive approximations and Newton's

method may be a good way for determining the Yi from (5.5).
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Whateverthe valueof #, wecanalsoemployvectorextrapolationmethods,suchasthe mini-

malpolynomialextrapolation(MPE) or the reducedrankextrapolation(RRE), to acceleratethe

convergenceof the sequencesof successiveapproximationsfrom (5.6). As no Jacobianmatrices

needto becomputedandno largescalelinearsystemsneedto besolvedin applyingMPE or RRE,

this approachto the solutionof the nonlinearequationsin (5.5)via successiveapproximationsand

vectorextrapolationmethodsmayturn out to bemoreeconomicalthan that of Newton'smethod,

at least in somecases.For the subjectof vectorextrapolationmethodswe refer the reader,for

example,to the reviewpaperby Smith,Ford,andSidi [SFS],andto Sidi [S],wherea FORTRAN

programthat implementsMPE andRREin anumericallystablewayisalsogiven.Morereferences

to developmentspertainingto MPE and RREcanbe foundin thesetwo papers.

Clearly, the problemof actual solutionof (5.5) is of importancein itself and shouldbe the

subjectof a separatepublication.

Onelast remarkthat wewouldlike to makeis that the approachof the presentwork canbe

appliedto systems of nonlinear Fredholm integral equations, and hence to systems of nonlinear

two-point BVP's, almost with no modification.
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X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4.347D - 05 1.087D - 05 3.999D-l- 00

6.508D- 05 1.627D- 05 3.999D ÷ 00

7.671D - 05 1.918D - 05 4.000D-I- 00

8.206D - 05 2.052D - 05 4.000D + 00

8.218D - 05 2.055D - 05 4.000D + 00

7.721D - 05 1.930D - 05 4.000D + 00

6.691D - 05 1.673D - 05 4.000D + 00

5.091D - 05 1.273D - 05 4.000D + 00

2.876D - 05 7.189D - 06 4.000D + 00

Table la. Results from quadrature method solution via the trapezoidal rule for Example 1. Here

e(g)(x) stands for lY_- y(xi)l, where x = xi = i/N for some i and Yi is the approximate solution

with h = 1/N.
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X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

eI1°°)(z)

9.571D - 09

e(_OO)(z)

5.985D- 10 1.599D + 01

1.056D- 08 6.601D - 10 1.599D + 01

9.611D- 09 6.010D- 10 1.599D+01

8.291D- 09 5.184D - 10 1.599D + 01

6.956D- 09 4.349D- 10

5.652D- 09 3.534D- 10

4.350D- 09 2.720D- 10

3.003D- 09 1.877D- 10

1.566D- 09 9.790D- 11

1.599D + 01

1.599D + 01

1.599D + 01

1.599D + 01

1.599D + 01

Table lb. Results from quadrature method solution via the corrected trapezoidal rule T2(h) for

Example 1. Here e(N)(x) stands for lYi - y(xi)l, where x = xl = i/N for some i and Yi is the

approximate solution with h = 1/N.
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x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y_oo(_) d(_°)(x) a('°°)(_) a(_°)(_,)la('°°)(_,)

2.902507D-02 2.0080- 10 6.0440- 11 3.3220+ 00

3.185952D-02 1.026D- 09 9.504D- 11 1.079D+ 01

4.090769D- 02 2.274D - 09 1.620D- 10 1.403D+ 01

5.7898650- 02 4.1420 - 09 2.7150- 10 1.5250 4-01

8.6037310- 02 6.8130- 09 4.3360- 10 1.5710 + 01

1.3051010- 01 1.0270- 08 6.4610- 10 1.589D4- 01

1.9920360- 01 1.3810- 08 8.6479- 10 1.59704- 01

3.0354260 - 01 1.5190 - 08 9.4750 - 10 1.6030 4-01

4.5909250- 01 9.8800- 09 6.1249- 10 1.6130 + 01

6.8496580- 01 4.6380 - 09 2.9730- 10 1.56004- 01

Table 2a. Results from quadrature method solution via the corrected trapezoidal rule _b_(h) for

Example 2 with _ = 10, _7= 0.5, and 7 = 2. Here Y_oo(X) is the numerical solution with

N = 200, d(5°)(x)= lyso(X)- yloo(_)l,and d(l°°)(x) -- ly,oo(x)- y_oo(x)l.
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X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.0727080- o6 6.7850 - 11 3.3680- 12 2.0059 + 01

4.440899D- 06 7.612D- 11 4.622D- 12 1.647D-F 01

1.6957089- 05 1.954D- 10 1.245D- 11 1.569D÷ 01

6.8221860- 05 5.1960 - 10 3.3559- 11 1.549D_-01

2.7537409- 04 1.0610 - 09 7.027D- 11 1.510D4-01

1.1116550- 03 1.3459 - 10 2.261D- 11 5.9480 + 00

4.4859999- 03 1.5809 - 08 9.3719- 10 1.6860 ÷ 01

1.8075430- 02 1.2310 - 07 7.511D- 09 1.6399 4-01

7.2385589- 02 6.288D- 07 3.858D- 08 1.630D+ 01

2.8277600- 01 1.6140 - 06 9.7210- 08 1.66004- 01

Table 2b. Results from quadrature method solution via the corrected trapezoidal rule T2(h) for

Example 2 with a - 100, _ -- 0.5, and 7 - 2. Here Y2oo(X) is the numerical solution with

g = 200, d(S°)(x) = lYso(x) - Yloo(X)l, and d(1°°)(x) = lYloo(X) - Y2oo(X)l.
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